Machine Learning

"Computing Machinery and Intelligence", in which the question "Can machines think?" is replaced with the question "Can machines do what we (as thinking entities) can do?". In Turing's proposal the various characteristics that could be possessed by a thinking machine and the various implications in constructing one are exposed.
Machine learning is closely related to computational statistics, which also focuses on prediction-making through the use of computers. It has strong ties to mathematical optimization, which delivers methods, theory and application domains to the field. Machine learning is sometimes conflated with data mining, where the latter sub field focuses more on exploratory data analysis and is known as unsupervised learning. Machine learning can also be unsupervised and be used to learn and establish baseline behavioral profiles for various entities and then used to find meaningful anomalies.
Machine learning is a field of computer science that gives computers the ability to learn without being explicitly programmed.
According to the Gartner hype cycle of 2016, machine learning is at its peak of inflated expectations. Effective machine learning is difficult because finding patterns is hard and often not enough training data is available; as a result, machine-learning programs often fail to deliver.

Comments

Popular posts from this blog

ETF- MINING TRUCK